

Synthesis of DNMT: A New Energetic Melt-Pour Ingredient

- Dr. David Price*, Dr. Jacob Morris
- BAE Systems/HSAAP
- October 2010

Background

- TNT has been the backbone of melt-pour explosives for most of the 20th century.
 - Not IM enough for today's standards
- DNAN is:
 - quickly becoming the favored replacement for TNT due to its superior IM properties.
 - not very energetic and performance of DNAN-based explosives suffer as a result.
- Future melt-pour energetics need to have best of both worlds:
 - Superior IM properties
 - Good explosive performance

Program Objectives

 Identify and Prepare New Melt Pour Ingredients with Inherent Comp B Performance

- •Evaluate Candidates Using Small Scale Safety and Performance Testing
- •Evaluate Scalability of Synthesis

•Evaluate Formulation Characteristics

Selection Criteria:

Melting Point in Desired Range (80-120C)
Sufficiently High Predicted Density
Perceived Ease of Preparation

Initial Candidate Compounds

DNMT

- Original procedure:
 - Pseudo one pot reaction
 - Developed by Prof. Katritzky, et al.
 - DNMT soluble in acidic water
 - Extraction required
 - Synthesis/purification not optimized
 - 25 grams produced by this method

BAE SYSTEMS

DNMT Improvements: DAMT synthesis

- Moved from one-pot to two-pot sequence
- 1st step:
 - Isolation of DAMT enhanced by minimizing water present in reaction
 - Product precipitates from reaction medium
 - Isolated by filtration

DAMT Properties

DAMT shows • 15 good thermal stability. 10 311.41°C Calculated detonation 5 Heat Flow (W/g) velocity (~7800 m/s). 212.86°C 0 166.5J/a 296.68°C 1371J/g Could find use as -5 part of eutectic in melt-pour 216.41°C applications. -10 -50 100 150 250 200 300 350 400 Exo Up Temperature (°C) Universal V4.5A TA Ins

BAE SYSTEMS

DNMT Improvements: DNMT synthesis

2nd step:

•Switching from diazotization to oxidation:

- •Uses less reagents (cheaper)
- •Generates mostly aqueous waste (more environmentally friendly)
- •DNMT precipitates from reaction medium
- •Product isolated by filtration

DNMT Properties

NAMT Properties

Safety Testing

ARDEC-Picatinny Arsenal

	ERL Impact (cm)	BAM Friction (N)	ESD (J)
DNMT	>100	>252	>0.25
RDX	25.4	>144	>0.25

OSI-Holston

Impact Sensitivity (cm), Navy method					
	Pre-melt	Post-melt			
DNMT	92.7	171.0			

- •Melt-recrystallization might provide amorphous character
- •Potentially remove crystalline defects/hot spots
- Appears valid for DNMT

BAE SYSTEMS

Performance-Rate Stick/Plate Dent

	Pcj, calc. (GPa)	Pcj, exp (GPa)	Energy out, calc. (cal/cc)	VOD, exp (Km/s)
DNMT	25.4	23.3	1739	7.850
Comp B	27.7	~27.6	1837	~7.960

Compatibility Evaluations

- •1:1-Mass:Mass Physical Mixtures of HSAAP Formulation Ingredients
- •DSC @ 5 °C/min. from 50 to 450 ${}^{\ensuremath{\mathfrak{C}}}$
- •Observe Changes in Exotherm Onset and Peak for Lowest Value Component
- •Negative Deviations \geq 10 °C Indicate "Fail"; Invoke VTS

Compatibility Matrix

			DNMT		
			MP	Exo Onset	Exo Max
NEAT DNMT		95.7	260.6	280	
	RDX				
MP	Exo Onset	Exo Max	88.2	204.3	230.9
203.6	205.8	227.9			
НМХ					
MP	Exo Onset	Exo Max	93.7	223.4	252.8
187.2	276.3	284.2			
NTO					
MP	Exo Onset	Exo Max	97.7	176.9	231.4
N/A	262.3	273.4			
ТАТВ					
MP	Exo Onset	Exo Max	97.6	227.1	243.5
N/A	366.56	373.8			
	DNAN				
MP	Exo Onset	Exo Max	54.8	301.6	322.3
94.2	326.9	342.9			
	NQ				
MP	Exo Onset	Exo Max	95.3	182.7	222.8
N/A	195.2	202.8			
	DNP				
MP	Exo Onset	Exo Max	46.25	285.4	345.6
86.5	275.8	296.9			
DNTF					
MP	Exo Onset	Exo Max	81.1/92.5	233.8	268.7
107.5	230.2	270.7			

➢DNMT appears to be compatible with RDX, DNAN, DNP, and DNTF

➢DNMT could have compatibility issues with HMX, NTO, TATB, and NQ.

Further compatibility tests were conducted (VTS):
 DNMT was found to be compatible with RDX, HMX, NTO.
 No other materials were tested.

Conclusions

- DNMT shows great promise of performance, scalability and affordability.
- Program deemed successful by OSI in terms of identifying and executing scalable, safe processes.
- Future work to include lab scale-up to produce several pounds of DNMT for LSGT, VOD, and formulation activities.

Acknowledgments

- RDECOM-ARDEC
 - Mr. Anthony DiStasio
 - Mr. Omar Abbassi
 - Mr. Sanjeev Singh
 - Dr. Reddy Damavarapu
 - Mr. Philip Samuels

•BAE Systems, HSAAP •Ms. Kelly Guntrum •Ms. Lisa Hale

